« previous section   next section »


Exercises
 

  1. Let j be a binary relation in the set Z of integer numbers defined below
    x j y iff x mod 5 = y mod 5.

  2. We assume: for every  n, m ∈ N,  n j m iff m2 - n2 is a multiple of  3.

  3. Let j be the relation in the set Z of integer numbers defined by: n j m iff  n mod 9 = m mod 9.
    Prove that the number abcd (written in the decimal notation - i.e. a, b, c, d are decimal digits) belongs to the class [0] iff the number (a+b+c+d) belongs to class [0].

  4. In the power set  P(X) such that  x0 ∈ X we define the relation:
    A j B iff  x0 ∈ A and x0 ∈ B or x0 ∉ A and x0 ∉ B


  5. Let  r1 and r2 be two equivalence classes in a set X. Show that r1 ∪ r2 is an equivalence relation iff  r1 ∪ r2 = r1o r2.

  6. Provide an arbitrarily chosen partition of the set  R × R. Define equivalence relation such that the abstraction classes form the given partition.

  7. How many equivalence relations may be defined in an n element set?


 

« previous section   next sectiont »