« previous section    next section »

Exercises

       

  1. Define an appropriate function to prove that  the following sets A and B are equipotent:


  2. Prove that the relation r defined in the set of all subsets of a set X by the formula
     
    A r B iff A and B are equipotent,
    is reflexive, symmetric and transitive.

  3. Prove that the sets of all points of any two circles are equipotent.


  4. Prove that the set A is countable (enumerable):


  5. Prove that the set of points of any arbitrary circle over the plain (i.e. R2 ) has  cardinality c.

 
« previous section    next section »