« poprzedni punkt | następny punkt » |
Definicja 10.4.1
Liczba kardynalna zbioru, czyli moc zbioru, jest cechą przypisaną zbiorowi w taki sposób, że
(1) liczba kardynalna zbioru pustego to 0 (zero),
(2) liczba kardynalna dowolnego zbioru skończonego, to liczba jego elementów,
(3) dwa zbiory mają przypisaną tę samą cechę wtedy i tylko wtedy, gdy są równoliczne.
Przyjmiemy oznaczenie : liczba kardynalna X = moc zbioru X = |X|.
Zgodnie z definicją, jeśli X ∼ Y, to |X| = |Y| i odwrotnie.
Przykład 10.4.1
Dla dowodu, załóżmy, że f jest funkcją ustalającą równoliczność zbiorów X i Y i niech g: P(X) → P(Y) w taki sposób, że g(A)=df {y ∈Y : f(x)=y dla pewnego x ∈ A} dla wszystkich podzbiorów A zbioru X.
Funkcja g jest różnowartościowa. Rzeczywiście, jeśli A ≠A', A,A' ∈ P(X), to istnieje element a należący do jednego zbioru np. a ∈A i nie należący do drugiego, a ∉ A'. Niech b = f(a). Wtedy b ∈ g(A), ale b ∉g(A') (gdyż w przeciwnym przypadku istniałby element a ' ∈ A', taki że f(a')=b, czyli f nie byłaby różnowartościowa). Zatem g(A) ≠g(A').
Funkcja g jest odwzorowaniem na P(Y), bo dla dowolnego B ∈ P(Y), zbiór f -1(B) ⊆ X, oraz g(f -1(B)) = B.
Wynika stąd, że g ustala wzajemnie jednoznaczną odpowiedniość między P(X) i P(Y), czyli |P(X) | = |P(Y)|.
Moc zbioru liczb naturalnych przyjęto oznaczać pierwszą literą alfabetu hebrajskiego alef0, a moc zbioru liczb rzeczywistych literą gotycką c (continuum).
|N| = alef0 oraz |R| = c.
Przykład 10.4.2
(1) Zbiór wszystkich odcinków położonych na osi liczb rzeczywistych, o końcach w punktach wymiernych, jest mocy alef0.
Uzasadnienie: Każdy odcinek możemy jednoznacznie scharakteryzować przez podanie jego punktów końcowych. Określimy funkcję f, która każdemu odcinkowi z naszego przykładu, przypisuje parę liczb wymiernych odpowiadającą lewemu i prawemu końcowi odcinka. Ustaliliśmy w ten sposób wzajemnie jednoznaczną odpowiedniość między zbiorem odcinków, a zbiorem par liczb wymiernych. Ponieważ zarówno zbiór liczb wymiernych Q jak i Q2 są zbiorami nieskończonymi przeliczalnymi zatem, zbiór odcinków na prostej o kończch wymiernych ma moc alef0.
(2) Przedział otwarto-domknięty jest mocy cotinuum. Weźmy funkcję f odwzorowującą zbiór {1/n}n=2,3,4,... na zbiór {1/n}n =1,2,3,... f(1/n) = 1/(n-1) dla n = 2,3,4,.... Niech g: (0,1) → (0,1], tak, że g(1/n) = f(1/n) dla n = 2,3,4...oraz g(x)= x dla x ∉ {1/2,1/3,1/4,...}. Tak określona funkcja g jest różnowartościowa, bo zarówno f jak i funkcja identycznościowa są różnowartościowe. Co więcej, funkcja g odwzorowuje przedział (0,1) na przedział (0,1]. Zatem |(0,1]| = |(0,1)| = |R| = c.
(4) Jeśli A jest zbiorem mocy alef0, a B zbiorem mocy c, to produkt A × B ma moc c.
Niech (a0,a1,a2,...) będzie nieskończonym ciągiem wszystkich elementów zbioru A. Ponieważ dowolne dwa przedziały zbioru liczb rzeczywistych są równoliczne i mają moc c, zatem istnieją bijekcje f0 : {(a0, b) : b ∈B} → (0, 1] , f1 : {(a1, b) : b ∈ B} → (1, 2] itd. fi : {(ai, b) : b ∈ B} → (i, i+1]. Przyjmując f((ai, b)) = fi (b) zdefiniujemy wzajemnie jednoznaczną funkcję odwzorowującą zbiór A ×B na R+. Ponieważ |R+| = |R| = c, więc |A × B| = c.
Na mocy rozważań w poprzednim punkcie i przyjętych definicji zbiór liczb naturalnych jest przeliczalny, a zbiór liczb rzeczywistych jest nieprzeliczalny. Stąd wniosek c ≠ alef0.
Pytanie 10.4.1: Jaka jest moc zbioru wszystkich punktów płaszczyzny?
« poprzedni punkt | następny punkt » |